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Korolev Str. 1, Perm, 614061, Russia 
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The method of transforming discrete structural models of particulate composites into 
adequate continuous representations is offered. Three dimensional levels of structural 
damage are treated as those of the cells, the finite elements and the specimens. 

Keywords: Damageable particulate composites; continuum model; cell model; struc- 
tural inhomogeneity; finite element method 

1. INTRODUCTION 

Recently [1] a rather abstract modeling of macrocrack formation 
from randomly-scattered microdamage initiated by deformation has 
been offered. In this approach, the material properties of a body are 
represented by a finite element system, where mechanical properties of 
finite elements vary within some definite range reflecting structural 
nonuniformity of particulate composites. 

The mechanical behavior of individual finite elements is represented 
by means of some basic discrete model whose geometry has the form 
of a set of “cross-sections’’ tied in series. Each cross-section is com- 
posed of two rigid clamps interconnected in parallel by a number of 

*One of a Collection of papers honoring Yuri S. Lipatov on the occasion of his 70th 
birthday, 10 July 1997. 
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elastic links that are primary structural elements of the system under 
consideration. As a whole, this structure is like a chain of elastic poker 
chips. The nonuniformity is introduced into the system through the 
nonuniformity of its primary elements, i.e. links, whose rupture elonga- 
tions are imposed as random values. During extension, some links are 
ruptured in a random fashion, simulating individual microdamage events. 

The microdamage accumulation enhances the elastic longitudinal 
nonuniformity of the discrete model to the extent at which the struc- 
ture loses its elastic stability and breaks down in the most compliant 
part. The tensile behavior of the discrete model is then identified with 
the tensile behavior of some continuous medium with a set of corre- 
sponding parameters that are assigned to a given finite element. In 
such a manner, a transition from the discrete representation to the 
continuous one is performed. Such a scheme permits us to follow the 
entire finite element life-cycle from the virgin state to final failure 
without appealing to the so-called strength criteria. 

In the model referenced in [l], the imposed structural parameters 
were chosen rather arbitrarily on the basis of common sense. How- 
ever, later on, a representative structural cell was developed [2] that 
opened the way to refine the description of the behavior of the basic 
structural element, the link, and thus to get a clearer insight into the 
inner mechanisms leading to the macroscopic behavior of particulate 
composites. The present paper describes. the refined variant of the 
model and demonstrates its potentialities. 

2. THEORETICAL BACKGROUND 

2.1. Structural Cell Characterization 

The unit cell used as a basis for model development and its typical tensile 
stress-strain curve are shown in Figure 1. From the solution of this 
boundary value problem [2] for such a loading, one obtains a set of 
parameters describing a rather complicated tensile resistance of the cell, 
f ,  as a function of its extension, e. Analytically it may be expressed as 
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FIGURE 1 
parameters. 

The shape of the unit cell and its typical tensile curve with specifying 

Here g 1  and g2 are the initial and final rigidities of the cell; e, is the 
extension of the cell at which the separation of the matrix from the 
filler particle begins; eb is the extension of the cell at which its break- 
down occurs; and c is the parameter defining the span between the 
start and the end of the separation process. The magnitudes g1 and g2 
are interrelated, both depending on the filler volume fraction, q. This 
dependence of y1 may be expressed as in Reference [3] 

while g2, according to our calculations, may be approximated as 

g 2  = Em( 1 - 0.97  PO.^^), ( 3 )  

where Em is the Young’s modulus of the matrix. 
In References [4,5], it was shown that internal tearing in elastomers 

occurs when the hydrostatic stress at the pole of the sphere reaches a 
magnitude equal to the Young’s modulus of the matrix, Em. Tearing 
the matrix at this place provokes its separation from the sphere. It has 
been assumed that this criterion may be regarded as the maximum 
achievable bond stress. Lesser magnitudes characterize adhesive de- 
bonds. In the following calculations maximum debond stress, go, and 
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accordingly debond strain, e,, values taken from the boundary value 
solutions have been used. 

After complete separation of the matrix from the filler particle, the 
strain concentration localized at the equatorial zone of the particle is 
characterized by the coefficient represented by the empirical formula 

k = 1.5 + 6.53 (p3 + 2 (p( 1 - exp( - 4.5 c)) .  (4) 

If the proper rupture deformation of the matrix is (em),, then the cell 
will finally be fractured at 

Thus, the mechanical behavior of the structural cell is now completely 
defined by the following basic structural parameters: filler volume 
fraction, y, matrix modulus, Em, matrix debond strain, pa ,  and matrix 
breaking strain, (ef,,)b. The parameter c may be taken equal to 4.0 for 
all cases. 

Hence, the tensile properties of the primary elements, the links, in 
the refined discrete model are now represented by Eq. (1)  and accom- 
panying Eq. (2)- (5). 

2.2. Composite Structural lnhomogeneity 

There exist at least two kinds of structural inhomogeneity: the geo- 
metrical local nonuniformity in thc mutual arrangement of particles 
and the physical-chemical noiiuniformity revealed as the debond 
non u n i fo rm i t y . 

The synthesis of the random geometrical structure consisting of 
identical spherical particles with the imposed filler volume fraction [S] 
allows one to obtain thc scatters of the local matrix volumes sur- 
rounding filler particles that have the form shown in Figure2. Ana- 
lytical representation of these distributions has the general form 

where F ( q )  is the probability of encountering a y smaller than the 
indicated one. From the above, it appears that the random character 
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FIGURE 2 
solid volume fractions indicated near the curves. 

Integral distribution cui-ves for local fillcr concentrations at various mcan 

of q induces the randomization of such cell parameters as g , , g 2 , e a  
and e,,. 

The determination of the scatter of the adhesive debond strains, e,, 
caused not by geometrical stochasticity but by the physical-chemical 
local scatter, remains yet not feasible. In the subsequent text it will be 
ignored. 

2.3. Finite Element Representation 

The transformation of the discrete model into the continuous one can 
be accomplished through the utilization of the finite element ap- 
proach. Evidently, it is impossible to treat the structure where one 
finite element is represented by one structural cell. Under such a 
condition, thousands (and possibly millions) of finite elements would 
have to be taken into account for adequate representation of realistic 
objects which goes far beyond the possibilities of modern computers. 
An averaging procedure seems to be inevitable. It may be realized by 
increasing the number of the cells that are to be enclosed in one finite 
element volume. 

This may be performed in the following manner: first, one calculates 
the number of particles, N , ,  within the volume of the specimen under 
consideration, having divided the total solid volume by the volume of 
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one particle (obviously, filler concentration, particle size and specimen 
dimensions are to be imposed previously); second, discretization of the 
specimen volume into a grid of the finite elements is to be made and 
the total number, N,, of finite elements within the volume of specimen 
is to be determined; third, having divided N, by N,, one finds the 
number of particles, rife, that are accounted for in one finite element. 

Now the task is to evaluate the mechanical behavior of finite ele- 
ments containing nf, particles each. Identifying one particle and its sur- 
roundings with one structural cell, one gets a chance to use the above 
discrete model for the solution of this problem. This is done by assuming 
that the mechanical behavior of a finite element having rife particles is 
identical with that of a discrete model containing rife cells (links). 

The calculated tensile curve of the discrete model represents an 
averaged tensile behavior of a given finite element. In the same man- 
ner, the averaged volume changes, based on summation of the volume 
changes of individual cells [7], are obtained. Typical views of the 
stress-strain and volume change-strain curves for a finite element 
holding 25 structural elements are shown in Figure 3 .  

The dependence of the modulus and volume changes on the defor- 
mation along the curve is then approximated up to the break-down 
point that is quite definite. The rupture occurs at  the moment when 
the loss of the elastic stability of a finite element considered, induced 
by the damage accumulatioo, comes about. In calculations reported 
hereafter, finite elements containing hundreds of cells were used. The 
approach offered allows one to create a bridge linking discrete and 
continuous representations for damageable particulate composites. 

- 1  
0 0.5 1.0 1.5 & 0 0.5 1.0 1.5 E 

FIGURE 3 
tions of deformation for an individual finite element. 

Typical dependencies of the shear modulus and volume changes as func- 
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2.4. Continuous Constitutive Relationships for Finite 
Element Representation 

An isotropic Hookean elastic solid has been chosen as a constitutive 
continuous model for composites under consideration with the gov- 
erning equations for the interconnection of stress, oij, and strain, cij, 
tensors as follows 

oij = ~ G ( E ~ ~  - 0/3)  + bija,  

where G is the current shear modulus, 0 is the volume change, oo is 
the mean stress, and dij is the Kronecker delta. 

The magnitude of G is found as a function of E from the correspond- 
ing averaged relation for each finite element. The damage accumula- 
tion in continuous modeling is reflected through the ever-decreasing 
elastic modulus. It is assumed that in the 3-0 conditions the value of 
G is determined by the value of the maximum main deformation, E ~ ,  

that is assumed to be a parameter controlling the softening of the 
composite. Obviously, due to the stochastic nature of the composite 
material such relationships vary from one finite element to another. 

In a similar fashion, the volume change for 3-0 conditions also may 
be taken as a function of the maximum main deformation, E ~ .  In the 
first approximation H depends on as follows 

where c1 and c2 are material constants specified for every finite 
element. 

2.5. Computation Procedure 

There is no need to describe the well-known scheme of the finite 
element implementation. In our case, the specificity of the computa- 
tion consists in accounting for the shear and bulk modulus drop with 
deformation including final complete fracture for every finite element. 

As a result of the original finite element nonuniformity, a large-scale 
nonuniformity appears and increases during deformation of the speci- 
men ending in the loss of the longitudinal elastic stability and the 
rupture in the most compliant part of the specimen. 
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So the approach offered describes the complete life-cycle of the 
material without reference to the so-called strength criteria. 

3. INVESTIGATION OF THE INFLUENCE OF SOME 
STRUCTURAL PARAMETERS ON MACROSCOPIC 
BEHAVIOR OF PLANE RECTANGULAR SPECIMENS 

To illustrate the capabilities of the approach under consideration, a 
composite with a matrix having solid particles of 36 pm in diameter, a 
Young modulus of 3.0MPa and a breaking strain of 3.0 has been 
examined. The choice of parameters allowed the comparison to be 
made with the available experimental data. 

The calculations were performed for solid volume fractions of 0.1, 
0.2 and 0.3, the range for all the concentrations being adopted. 
Figure 4 (a) demonstrates the calculated stress-strain curves while 
Figure 4 (b) represents experimental data from Reference [S]. The 
similarity between both figures seems to be satisfactory. The cal- 
culated breaking strains and stresses of the composite specimens are 
about 3 times and 5 times smaller than those of the pure matrix. 

The diminution of the particle sizes, obviously leading to higher 
uniformity of the material, should provide higher ultimate properties. 

a h 
CT MPa 0 MPa 

0 0.5 E 0 0.5 E 

FIGURE 4 The calculated (a) and experimental (b) tensile curves. Numerical values 
near the curves indicate filler concentraiton. 
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FIGURE 5 
mental. Numerical values near the curves indicate filler particle sizes. 

The effect of particle size on the tensile curves, (a) calculated, (b) experi- 

The influence of the particle sizes has been examined for particles of 
36, 98 and 255pm in diameter. The calculated and experimental 181 
data are shown in Figures 5(a) and (b), respectively. 

This figure, as a preceding one, demonstrates the qualitative simila- 
rity between calculated and test results. 

4. CONCLUSION 

A method of transforming discrete structural models of particulate 
composites into adequate continuous representations is offered. 

Three-dimensional levels of structural damage are treated as those 
of the cells, the finite elements and the specimens. 

The calculated and experimental data seems to be qualitatively 
similar to each other. 

The approach offered should be regarded as a “breadboard model 
requiring subsequent detailed exploration and refinement. 
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